
 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 1

POLYGLOT PERSISTENCE FOR

CASSANDRA AND NEO4J
 [1]

 Komalpreet Kaur
 [1]

Thapar University, Patiala, India
[1]

2277komal@gmail.com

Abstract: The given paper is related to polyglot persistence using Cassandra and Neo4j. The paper firstly discusses the benefits of

Cassandra and Neo4j. It also provide us with advantages of Neo4j over Cassandra leading to a need of mapping of data from

Cassandra to Neo4j. It then discusses the basic difference between structure of Cassandra and Neo4j and finally, proposes an algorithm

for conversion of data from Cassandra to Neo4j..

Keywords: NoSQL; polyglot persistence; Cassandra; Neo4j ; use-case; migration; column family

I. INTRODUCTION

From past 2-3 decades, technology disruption is happening very rapidly. From pre-stage flat-file system introduced in 70s, to

relational and object-relational systems in 90s and then NoSQL databases from 2005 onwards, there have been a lot of changes

in how to store huge amount of data. Now-a- days there are a lot many different types of NoSQL databases each having

capability of storing different types of data. But for large applications, data is not homogeneous, and in that case its difficult

to decide which database to choose. And in such cases, using a single database engine for all of the requirements like data

storage or retrieval usually provide non-per formant solutions. Hence, we need a rigid solution that is provided by the concept

of polyglot persistence. Talking about its meaning, Poly-glot means knowing or using different languages and persistence means

prolonged use of something. Technically, Polyglot Persistence is a fancy term to mean that when storing data, it is best to use

multiple data storage technologies, that is chosen on the basis of the way data is being used by individual applications or

components of a single application.[2] Different kinds of data are best dealt with different data stores. In short, it means picking

the right tool for the right use case.

Polyglot persistence does not only mean using NoSQL databases in combination, but it provides facility of using SQL and NoSQL

databases together. Figure 1 shows different type of databases that are best suitable for different applications.

This paper basically talks about the combination of two NoSQL databases namely, Neo4j and Cassandra, where Neo4j is graph

database and Cassandra is column database. In Neo4j, data is stored in the form of nodes and relations whereas in Cassandra,

data is stored in columns. We are taking the scenario where we have the whole data stored in Cassandra and we need to

synchronize and map it to Neo4j. But why we need to do this? As we know that each database has its own advantages and

disadvantages, there are situations where Neo4j will be a better choice than Cassandra. Hence, with this

Fig. 1. Different databases suitability with different applications

we can take advantage of the strengths of both databases to enhance functionality of our application.

A. When to choose Neo4j over Cassandra?

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 2

Cassandra having master less clustering model, data repli cation ability and reliance on eventual consistency, its biggest

strength is the ability to handle a very high read throughput.[3] For this reason, Cassandra is often used to store high volume

data such as event logs, which don’t require ACID guarantees like what is available with Neo4j.But there are some situations

where Neo4j perform better than Cassandra. Such situations are summarized as follows:-

• Finding relationships

As mentioned above, Cassandra store data in form of columns, which in some ways gives a performance advan- tage but

this disconnected construction makes it harder to harness data relationships properly. Although, there is possibility of

adding data relationships by embedding aggregate identifying information inside the field of an- other aggregate, but

joining aggregates at the application level later becomes just as prohibitively expensive as in a relational database.

On the other hand, graph databases store data relation- ships as relationships. Everything is connected. It has the flexibility to

add new nodes and relationships without compromising our existing network or expensively mi- grating our data. With data

relationships at their core, graph databases are incredibly efficient when it comes to query speeds, even for deep and complex

queries.[1] Hence, graph database like Neo4j are optimized for querying connections between people, things, interests, or really

anything that can be connected. With this

TABLE I
TABLE SHOWING BASIC DIFFERENCE BETWEEN STRUCTURE OF CASSANDRA AND

NEO4J

they reveal patterns of similar behavior, influence, and implicit groups.

• Real time recommendations and decision making:- Neo4js native graph storing makes it easier to decipher

suggestion data without any intermediate indexing every time. Neo4js native graph processing engine supports high-

performance graph queries on large user datasets to enable real-time decision making. With this, it enable users to

search for products, services or people based on a host of fine-grained criteria and continually improve

recommendations by accommodating new data sources and types. Hence, Neo4j is more suitable than Cassandra for

drawing relationships and developing recommenda- tions in applications like retail suggestion engines, fraud detection

and social network monitoring.

 II. RELATED WORK

The increase in demand for storage of high volume of variety of application specific data has exceeded the capabil- ities of

single database. Due to this, the need for polyglot persistence is increasing as organizations prefer to use the best

combination database suitable for their application.[2] During initial times many conversions from relational database to

graph database, column database took place as most of the organizations have their information, usually stored in

relational databases. For this reason, several solutions have been proposed which provide the comparison of schema of

different databases as in [8] and mapping and migrating data from relational to Neo4j as in [7,9]. Not only this, the author in

Cassandra Neo4j

Cassandra comprises of table containing columns which is the
basic unit of storage.

Graph database comprises of nodes with edges as relationships,
each having some properties.

Tables or column families(containing columns that we are
likely to query together) are the entities of a key space.

It consists of a label that is used to group nodes into sets. It
is just like table name as all nodes labeled with the same
label belongs to the same set.

Table further has row key, super column, column name and
column value. Hence, it is a list of nested key-value pairs.

Graph contains properties that describe and provide value of a
particular node or relationship.

Cassandra schema design focuses primarily on query patterns.
Based on the type of data, demoralization and data
duplication indirectly show relationships by combining related
data.

It has edges that connect the nodes and properties,
defining the relationship between them. The value is derived
when analyzing the patterns between the nodes and the
properties.

The primary key in Cassandra is made up of two parts: the
Partition Key and the Clustering Columns. The first maps to the
storage engine row key, while the second is used to group
columns in a row.

Primary key or node with unique properties is created using
unique constraints.

Null fields don’t exist in Cassandra unless we add them. Null value in Neo4j are missing value or undefined value of
properties of a node or relationship.

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 3

[10] provides further high query optimization technique based on graph contraction that creates summarized graph in advance

and uses it to efficiently query the original dataset. This is a promising technique for retrieving data in semantic aware

computing. Similarly conversion of relational to column database is given in [5] and proposal of a systematic approach to

database schema design in NoSQL column stores by means of automated schema generation and application-specific

schema is given in [6]. This research paper is motivated from the fact that we can devise any type of use case according to

Fig. 2. Cassandra schema for User-Item Keyspace

the requirements of the application and the type of information to be stored. There are many such conversion from one

database to another, but to the best of our knowledge, there is no work that tackles specifically the problem of migrating

data and queries from a column database (Cassandra) to a graph database (Neo4j) which is the main focus of given research

paper. To devise such conversion requires deep understanding of the basic schema/structure and the query language for both

Neo4j and Cassandra that is provided by authors in [1] and [3] respectively, which further leads to writing an algorithm for

migration of data from Cassandra to Neo4j.

III. PROPOSED ALGORITHM WITH EXAMPLE

Before giving algorithm for mapping and conversion of

data from Cassandra to Neo4j firstly, lets talk about the basic

difference between the structure of Cassandra and neo4j that is given in Table 1:

Fig. 3. Resultant Neo4j graph database for User-Item database

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 4

Now, lets take an example of an e-commerce system where users can like one or more items. One user can like

multiple items and one item can be liked by multiple users, leading to a many-to-many relationship. Initially the data

for this application is stored in Cassandra database as shown in figure

2. Its corresponding mapping in Neo4j results in a graph as shown in Figure 3. The migration of data from Column

database to graph database is done using algorithm given below, in which Cassandra database is given as input and after

processing through all the modules the output generated is the Graph Database G.

Algorithm 1 – Transform Cassandra Database C to Neo4j Graph Database G

Input: Cassandra Database C

Output: Neo4j Database G

Initialisation :

1: traversed[]<– φ

2: ColFamily[] <– List of all tables in C

3: SColFamily[] <– List of tables that gives general infor- mation in C

4: RColFamily[] <– List of tables that give relational infor-

mation in C

5: for each SColFamily ∈ SColFamily[] do

6: Call traverseSColFamily();

7: end for

traversed[] <– SColFamily

8: for each RColFamily ∈ RColFamily[] do

9: Call traverseRColFamily();

10: end for

Call createIndexes();

11: return

Initially, schema information of column database C will be collected in variables described as follows:-

ColFamily[] - List of all tables or column family of Cassandra. It contains User, item, User By item, item By User.

SColFamily[] - List of tables or column family that gives general information. It contains User, item tables.

RColFamily[] - List of tables or column family that give relational information in Cassandra database. It contains User

By Dept, Dept By User tables.

Traversed[] - Table name is added to this list after that table is traversed. Initially, this list is empty.

traverseSColFamily() - This module is called for each table in SColFamily[]- list that has unique row key.

traverseRColFamily()- This module is called for tables that creates relation by using row keys of other tables as

column value.

createIndexes() - This module create indexes.

In the end createIndexes() module is called to create indexes on all the nodes formed so far. Clearly, the above algorithm

makes call to different modules/functions which actually perform the data migration task.

Various modules (traverseScolumnFamily(), traverseRcolumn- Family(), CreateIndex()) called from Algorithm 1 are

briefly explained as follows :-

Algorithm 2 – traverseSColFamily()

1: for each tuple{t} ∈ SColFamily do

2: if SColFamily !∈ traversed[] then

3: firstNode <– createNode();

4: addProperties() <– t.getColumnValues(); 5: addLabel() <– SColFamily.getName();

6: else

7: firstNode <– findNode(), where 8: firstNode.label = table.getName() 9:

 property = t.RowKey

10: end if

11: end for

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 5

12: return

traverseSColFamily() is called for each table in SColFam- ily[] list that has row key. Suppose traverseSColFamily() is

called for User table.

For each SColFamily if that table or column family is not tra- versed than its tuples are read. For each tuple t of

SColFamily a node firstNode is created in graph G, where firstNode has properties same as columns of tuple t. A

label is also added to the node as the name of the SColFamily.

Such as for tuple (100,alice) a node is created with User id as 100 and name as alice and label as User. If the

SColFamily is already traversed than the node firstNode is found from Graph Database G with its property values same

as the tuple t’s column values. The row key of Cassandra is converted to property of node with unique constraint in

Neo4j.

Algorithm 3 – traverseRColFamily()

 Initialisation :

1: importedTables[] <– SColFamily.getImportedKeyInfo()

2: getCount <– 0

3: for each tuple {t1} ∈ RColFamily do

4: for each importedTable ∈ importedTables[] & where importedTable.rowKey.value = t1.rowKey.value do

5: for all t1.columnKey corresponding to t1.rowKey in RColFamily[] do

6: while t1.columnKey != null do

7: getCount++

8: t1.columnKey++

9: end while

10: while getCount != 0 do

11: findNode() in G, where

12: node.property = t1.rowKey.value

13: node.property = t1.columnKey.value

14: addEdge();

15: t1.columnKey++

16: end while

17: end for

18: end for

19: end for

20: return

traverseRColFamily():- In our example database User By item, item By User are tables under RColFamily.

For each table its imported key information is collected. Imported key information contains the table name of those tables

whose row keys are being used in column name in the table. In our case, User and item table are the tables whose row

keys are used as column name in tables User By Dept, item By User.

Now for each tuple of RColFamily (for eg. item By User) its joinable tuples are found in all the imported tables. For table

User By Dept, with row key 300 and column value 20,30 its joinable nodes are :person(300,james) to :item(20,mobile)

and :item(30,watch). The getCount variable will give the count of number of instances (column keys) a particular row key

is associated. Here the getCount is 2. Now, for each joinable tuple find its corresponding node in G, keep on creating

edges between the nodes until the getCount variable is not 0. Here two edges will be created as given in figure 2

for :User(200,James).

Algorithm 4 – createIndexes()

1: for each SColFamily ∈ SColFamily[] do

2: Create index such that

3: label = SColFamily.name

4: index = SColFamily.RowKey

5: end for

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 6

In the end, indexes are created for all node labels. The module defined above create indexes on the attributes that were

row keys in Cassandra. Hence like this we can migrate the whole data from Cassandra to Neo4j.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach to automati- cally migrate data from column database Cassandra to

graph database Neo4j. Taking into consideration, the shortcomings of Cassandra and its inefficiency in handling large

amount of relationship motivated this migration. But at the same time Cassandra’s ability of high write throughput

can also not be neglected. Applications (eg. fraud detection) that have high write throughput and also need to explore

relationships within its data can possibly use such kind of use-case. There are no solutions that really stand out of

the lot, there are only solutions adapted to the needs. Hence, this all justifies the need of polyglot persistence for

Cassandra and Neo4j. The algorithm presented in the paper has been implemented and tested to prove the feasibility

of the approach and efficiency of data mapping and migration. In future works I intend to refine the technique or the

algorithm proposed in this paper to obtain a more scalable and compact target database.

REFERENCES

[1] Hongcheng Huang and Ziyu Dong. Research on architecture and query performance based on distributed graph
database neo4j. In Consumer Electronics, Communications and Networks (CECNet), 2013 3rd Inter- national
Conference on, pages 533536, Nov 2013.

[2] R. Sellami, S. Bhiri, and B. Defude. Supporting multi data stores applica- tions in cloud environments. IEEE
Transactions on Services Computing, 9(1):5971, Jan 2016.

[3] G. Wang and J. Tang. The nosql principles and basic application of cassandra model. In Computer Science Service
System (CSSS), 2012 International Conference on, pages 13321335, Aug 2012.

[4] S. Prasad. Application of polyglot persistence to enhance performance of the energy data management systems.
Advances in Electronics, Comput- ers and Communications (ICAECC), 2014 International Conference,10-11 Oct.
2014.

[5] V. Bhagat. Comparative Study of Row and Column Oriented Database 2012 Fifth International Conference on
Emerging Trends in Engineering and Technology 5-7 Nov. 2012.

[6] D. Bermbach. Informed Schema Design for Column Store-Based Database Services IEEE 8th International
Conference on Service- Oriented Computing and Applications (SOCA) 19-21 Oct, 2015.

[7] S.Bordoloi and B.Kalita. Designing Graph Database Models from Exist- ing Relational Databases. International
Journal of Computer Applica- tions (0975 8887), July 2013 .

[8] S.Batra, C.Tyagi.Comparative Analysis of Relational And Graph Databases International Journal of Soft Computing
and Engineering (IJSCE), May 2012.

[9] R. Chen. Managing massive graphs in relational DBMS Big Data, 2013 IEEE International Conference, 6-9 Oct.
2013.

[10] A.Hayakawa. Efficient Query Processing of Semantic Data Using Graph Contraction on RDBMS Signal-Image

Technology and Internet-Based Systems (SITIS), 2013 International Conference 2-5Dec. 2013.

http://www.ijirmet.com/

