
 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 1

FAULT TOLERANCE IN VARIOUS

COMPUTING ENVIRONMENTS
[1]

 Anchal Mal
[1]

Thapar University, Patiala
[1]

anchalmal2@gmail.com

Abstract: The computational world is becoming very large and complex. There is a blast of new raw data being generated

everyday, every hour, every single minute. Today, Google receives 4 million search queries per minute according to the stats given in

Data Never Sleeps infographic. Off recent, people have started focusing on reducing computing pro- cessors powers and improve

system through- out. Ma jor computing problems have come up in various sectors such as IT and ICT which have lead to the

evolution of the pre- viously used, traditional computing environ- ments in order to meet the demands, de- mand for more

computational power and storage space. With so much going on, any kind of failure/fault is not acceptable and hence, fault tolerance

is the prime need to make computing environments reliable, ro- bust, dependable and available. This pa- per aims at exploring

various fault toler- ance methodologies in parallel computing which includes grid, clusters and cloud pro- cessing environments and

serial computing which includes homogeneous and heteroge- neous computing environments. Along with this, fault tolerance

challenges in ubiquitous computing are also described. This paper is a comparative and intensive study on dis- crete advantages,

challenges and issues of fault tolerance in cloud computing. Also, it is an attempt to describe the evolution of the computing

frameworks with time.

Keywords: Fault tolerance, Computing en- vironment, Cloud computing, Reliability, Ubiquitous computing, Heterogeneous com-

puting, Reactive, Proactive

I. INTRODUCTION

Computing systems are used in numer- ous applications like defense systems, bank- ing, flight systems, telephone

systems etc. Wrong outputs will have different conse- quences leading to inconvenience. Unrelia- bility in any system,

computing or otherwise is due to faults in the system. Therefore, fault tolerance is a critical issue in applica- tion and

computing platforms. Fault tolerance is a major concern to guar- antee availability and reliability of critical services as

well as application execution. When a fault occurs these techniques pro- vide mechanisms to the software to prevent

system failure occurrences. To address all such techniques, a comprehensive study has been done. The rest of the paper is

organized as fol- lows. Section 2 discusses the nomencla- ture of fault, error and failure along with an overview

different aspects of fault toler- ance.Section 3 derives the factors influenc- ing fault tolerance methodologies. Section

4 presents the challenges and issues of fault tolerance in different environments. Section 5 finally concludes the paper.

II. TAXONOMY OF FAULT AND FAULT TOLERANCE

Fault is the inability of a system to do the required job caused by an anomalous state or bug which may be present in one

or more than one parts of a system. Faults are the main cause of an error. Different faults are classified as shown in

Fig.2

Figure 1: Consequence of a fault

It deals with the art and science of build- ing/working of computing systems that continue performing in presence of faults

(one or more in any of the components) satisfactorily. If the operating quality decreases, the decrease is proportional to

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 2

the severity of the fault. A fault tolerant design, enables the system to continue its required task, possibly at reduced

level rather than failing com- pletely, when any fault occurs; that is the system doesnt stops completely due to problems

either in hardware or soft- ware. For example, a building with a backup electrical generator will provide same voltage to

wall outlets even if grid power fails.

III. FACTORS INFLUENCING FAULT TOLERANCE METHODOLOGIES

 Effective fault tolerance techniques have many metrics in its account as follows:

• Scalability: It determines the capabil- ity of an algorithm to tolerate the faults with given number of nodes.

Figure 2: Nomenclature of faults

Figure 3: Metrics for fault tolerance

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 3

Table 1: Table showing two ma jor types of fault tolerance [1]

Hardware fault tolerance Software fault tolerance

Most of fault-tolerant strategies have fo-

cused towards structuring systems that

can recover themselves from the faults

that usually occur in hardware modules,

this involves splitting a computing sys-

tem into modules. So if a particular

module gets failed, other module can

continue its functioning.

It is similar to hardware approach but

here more consideration is on tolerating

faults at the software level. For achiev-

ing this various static and dynamic re-

dundancy approaches are used.

• Reliability: It aims to give accurate out- puts within specified period of time.

• Response time: It is the time taken by a particular algorithm to respond.

• Throughput: It is the number of tasks which have completed their execution.

• Performance: It is used to check profi- ciency of the system.

• Overhead: It describes the amount of overhead involved while executing a fault tolerance algorithm.

• Availability: The possibility that a par- ticular job will function adequately at a given amount of time can be considered

in terms of availability of resources.

IV. CHALLENGES IN VARIOUS FAULT TOLERANCE TECHNIQUES

• Homogeneous Computing

Computing systems have evolved at a fast pace, homogeneous serial systems [2] were first used which guaranteed sim- ilar

results and storage on each hard- ware processor, same results for floating point numbers; even the software (op- erating

system, compiler, compiler op- tions) on each processor also guaran- tees the same storage representation and the same

same results for operations on floating point numbers.

Hardware, time, information, and soft- ware redundancy are used for fault- tolerance. Of the many structures used in

hardware fault-tolerance [3], two stand out.

• Heterogeneous Computing

It refers to systems that use more than one kind of processors and cores. These computational units (general purpose

processor, special purpose processor or a co processor) make the systems per- form better. Heterogeneity [4] here was

basically in context of different instruc- tion set architectures, where main pro- cessor had one and rest had different,

consumed high power. The addition of the extra computational units makes this system similar as parallel comput- ing

or multi-core computing systems and hence, more tasks are being completed per unit time. Real time fault tolerant

scheduling algorithms [5] are used.

• Grid Computing

It offers sharing of resources over geo- graphically distributed locations, a com- puter network in which each computer’s

resources are shared with every other computer in the system. Moreover, col- laborative nature of grids leads to con- cept of

virtual organizations(VO) which work towards a particular task. Various fault tolerance techniques at application levels have

been proposed.

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 4

System level Checkpoint/ Message Log-

ging [6]

The idea is to incorporate fault toler-

ance in the system level so that applica- tion can

 be recovered automatically.

Compiler based fault tolerance It is a transparent approach in which

compiler inserts the checkpoint at the best place

and to exclude irrelevant memory to reduce

the size of check- point.

User Level checkpoint libraries The idea is to provide some checkpoint

libraries programmer and let the pro- grammer

decide where, what to check- point.

Algorithmic fault tolerance approach The idea is to exploit the knowledge

of algorithms to reduce fault tolerance

overhead to the minimum.

• Cloud Computing

Cloud Computing is a concept which refers to services and applications which are executed on a distributed network

with the help of resources which are vir- tualized. Cloud refers to somewhere up there, with huge amount of flexible re-

sources that can be used whenever re- quired.

Table 2: Table showing fault tolerance techniques in heterogeneous environment

Figure 4: Pervasive Computing

Two broad classifications of fault tol- erance techniques in cloud: 1. Reac- tive [7]: It reduces the consequence of

failures on application execution when the failure effectually occurs. 2. Proac- tive [8]: Principle of this method is to

avoid recovery from faults, errors and failures by predicting them and replac- ing the doubted components with other

working components.

• Ubiquitous Computing

Currently, pervasive computing [22] is trending. Pervasive computing goes be- yond the realm of personal computers: it is

the idea that almost any device, can be embedded with chips to connect the device to network of other devices. Since

pervasive computing exists in the user’s environment, the technology is sustain- able if it is invisible to the user and does

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 5

not intrude the user’s conscious- ness. A pervasive system consists of different kinds of devices such as desk- tops,

laptops, handhelds, sensors, actu- ators, displays, speakers, scanners, cam- eras and pro jectors etc.

Therefore, the system needs to be re- silient to various faults, an application or device that stops on failure can be de-

tected through timeout techniques such as heartbeat messages. Once a fault is identified, it should be isolated to pre- vent

its propagation to other parts of the system, faults should be tolerated with minimal user awareness.

V. CONCLUSION

Tolerance of faults makes an important problem in the scope of environments of computing. In the present scene, there

are number of models which provide different mechanisms to improve the system and pro- vide reliability; only the most

efficient ones have been discussed in this paper. But still there are number of problems which re- quires some concern

for every frame work. Computing systems have evolved at a fast pace and now the entire focus has shifted

Table 3: Table showing cloud computing fault tolerance techniques
Fault toler-

ance tech-

niques

Category Ma jor features Tools Used Types of faults

detected

Check

pointing/

Restart [9]

Reactive When a task fails, it is al-

lowed to be restarted from the

recently checked pointed state rather
than from the beginning. It is an

efficient task level fault tolerance.

SHelp [10] Application fail-

ure

Replication
[11]

Reactive Various task replicas are run
on different resources, for the

execution to succeed till the entire

replicated task is not crashed.

HA-Proxy [12],
Hadoop [13],

AmazonEc2

Node fail-
ure,Process failure

Job Migra-

tion [14]

Reactive During failure of any task, it

can be migrated to another machine.

HA-Proxy Node fail-

ure,Process failure

S-guard
[15]

Reactive It is based on rollback re-
covery less disruptive to nor- mal

stream processing and makes more

resources avail- able.

Hadoop Application fail-
ure,Node failure

Retry [16] Reactive It retries the failed task on

the same cloud resource.

Assure [17] Netwok fail-

ure,Host failure

Task re-
submission

[18]

Reactive Whenever a failed task is de-
tected, it is resubmitted ei- ther to

the same or to a dif- ferent resource

at runtime.

AmazonEc2 Node fail-
ure,Application failure

Rescue

work- flow [19]

Reactive It is a technique in which

workflow to continue even if the

task fails until it be- comes
impossible to move forward without

catering the failed task.

Hadoop Node fail-

ure,Application failure

Self healing
[20]

Proactive When multiple instances of
an application are running on

multiple virtual ma- chines, it

automatically han- dles failure of
application in- stances.

Assue Netwok fail-
ure,Host failure

Preemptive

migra- tion [21]

Proactive It relies on a feedback-loop

control mechanism where application

is constantly monitored and analyzed.

HA-Proxy Node fail-

ure,Process failure

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 6

Table 4: Table showing fault tolerance techniques in pervasive environment

Device failures Each device has its own set of faults that

can potentially contribute to the fail- ure of the pervasive

system. Mobile de- vices have physical constraints such as

finite battery power and limited signal strength. So if the

battery goes down or if the signal strength is too low they get

disconnected from the pervasive system and are regarded as

having failed.

Application failures Even in well-tested software systems,

bugs of varying severity are found . Per- vasive computing

includes commercial off-the-shelf applications that may not be

well tested. In some situations, ap- plications may work well

as stand-alone software but may not inter-operate cor- rectly or

reliably with other software.

Network failures Pervasive systems consist of wired and

wireless devices. Therefore, a reli- able pervasive system

should account for network failures caused by low signal

strength, devices going out of range and unavailability of

communication chan- nels due to heavy traffic. Network fail-

ures lead to unreachable devices that may be wrongly

perceived as device fail- ures.

to cloud and pervasive computing. This pa- per discussed the fault tolerance techniques covering

its research challenges, tools used for implementing fault tolerance techniques in computing

environments along with how computing systems have evolved over time.

References

[1] B. Randell, “System structure for software fault tolerance,” in ACM SIGPLAN Notices, vol. 10, no. 6.

ACM, 1975, pp. 437–449.

[2] M. Taufer, D. Anderson, P. Cicotti, and C. L. Brooks III, “Homogeneous redundancy: a technique to

ensure integrity of molecular simulation results using public computing,” in Parallel and Distributed Processing

Sympo- sium, 2005. Proceedings. 19th IEEE Interna- tional. IEEE, 2005, pp. 119a–119a.

[3] A. Avižienis and J. P. Kelly, “Fault toler- ance by design diversity: Concepts and exper- iments,” Computer,

vol. 17, no. 8, pp. 67–80,1984.

[4] A. A. Khokhar, V. K. Prasanna, M. E. Shaa- ban, and C.-L. Wang, “Heterogeneous com- puting: Challenges and

opportunities,” Com- puter, no. 6, pp. 18–27, 1993.

[5] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity task scheduling for

heterogeneous comput- ing,” Parallel and Distributed Systems, IEEE Transactions on, vol. 13, no. 3, pp. 260–274,

2002.

[6] S. Yi, A. Andrzejak, and D. Kondo, “Mone- tary cost-aware checkpointing and migration on amazon cloud spot

instances,” Services Computing, IEEE Transactions on, vol. 5, no. 4, pp. 512–524, 2012.

[7] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis, “Building a reactive immune system for software

services,” in Proceedings of the general track, 2005 USENIX annual tech- nical conference: April 10-15, 2005, Anaheim,

CA, USA. USENIX, 2005, pp. 149–161.

http://www.ijirmet.com/

 ISSN (Online): 2456-0448
International Journal Of Innovative Research In Management, Engineering And Technology

Vol. 1, Issue 5, June 2016

Copyright to IJIRMET www.ijirmet.com 7

[8] G. Vallee, C. Engelmann, A. Tikotekar, T. Naughton, K. Charoenpornwattana, C. Leangsuksun, and S. L.

Scott, “A frame- work for proactive fault tolerance,” in Availability, Reliability and Security, 2008. ARES 08. Third

International Conference on. IEEE, 2008, pp. 659–664.

[9] S. K. Mondal, F. Machida, and J. K. Muppala, “Service reliability enhancement in cloud by checkpointing and

replication,” in Principles of Performance and Reliability Modeling and Evaluation. Springer, 2016, pp. 425–448.

[10] G. Chen, H. Jin, D. Zou, B. B. Zhou, and W. Qiang, “A lightweight software fault- tolerance system in the

cloud environment,” Concurrency and Computation: Practice and Experience, vol. 27, no. 12, pp. 2982–2998,

2015.

[11] H. Goudarzi and M. Pedram, “Energy-efficient virtual machine replication and placement in a cloud computing

system,” in Cloud Computing (CLOUD), 2012 IEEE 5th International Con- ference on. IEEE, 2012, pp. 750–757.

[12] P. K. Patra, H. Singh, and G. Singh, “Fault tolerance techniques and comparative imple- mentation in cloud

computing,” International Journal of Computer Applications, vol. 64, no. 14, 2013.

[13] K. Kambatla, A. Pathak, and H. Pucha, “To- wards optimizing hadoop provisioning in the cloud.” HotCloud, vol. 9,

p. 12, 2009.

[14] I. Brandic, “Towards self-manageable cloud services,” in Computer Software and Applica- tions Conference,

2009. COMPSAC’09. 33rd Annual IEEE International, vol. 2. IEEE,

2009, pp. 128–133.

[15] P. K. Patra, H. Singh, and G. Singh, “Fault tolerance techniques and comparative imple- mentation in cloud

computing,” International Journal of Computer Applications, vol. 64, no. 14, 2013.

[16] M. Abu Sharkh, M. Jammal, A. Shami, and A. Ouda, “Resource allocation in a network- based cloud computing

environment: de- sign challenges,” Communications Magazine, IEEE, vol. 51, no. 11, pp. 46–52, 2013.

[17] B. P. Rimal, E. Choi, and I. Lumb, “A taxon- omy and survey of cloud computing systems,” in 2009 Fifth

International Joint Conference on INC, IMS and IDC. Ieee, 2009, pp. 44–

51.

[18] K. Plankensteiner, R. Prodan, and T. Fahringer, “A new fault tolerance heuristic for scientific workflows

in highly distributed environments based on resubmission impact,” in 2009 Fifth IEEE International Conference on e-

Science. IEEE, 2009, pp. 313–320.

[19] E. Sindrilaru, A. Costan, and V. Cristea, “Fault tolerance and recovery in grid workflow management systems,”

in Complex, Intelligent and Software Intensive Systems (CISIS), 2010

International Conference on. IEEE, 2010, pp.

475–480.

[20] Y. Dai, Y. Xiang, and G. Zhang, “Self-healing and hybrid diagnosis in cloud computing,” in Cloud computing.

Springer, 2009, pp. 45–56.

[21] R. Santhosh and T. Ravichandran, “Pre- emptive scheduling of on-line real time ser- vices with task migration

for cloud comput- ing,” in Pattern Recognition, Informatics and Mobile Engineering (PRIME), 2013 Interna- tional

Conference on. IEEE, 2013, pp. 271–

276.

[22] D. Saha and A. Mukherjee, “Pervasive com- puting: a paradigm for the 21st century,” Computer, vol. 36, no. 3, pp.

25–31, 2003.

http://www.ijirmet.com/

